If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x=243
We move all terms to the left:
3x^2+4x-(243)=0
a = 3; b = 4; c = -243;
Δ = b2-4ac
Δ = 42-4·3·(-243)
Δ = 2932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2932}=\sqrt{4*733}=\sqrt{4}*\sqrt{733}=2\sqrt{733}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{733}}{2*3}=\frac{-4-2\sqrt{733}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{733}}{2*3}=\frac{-4+2\sqrt{733}}{6} $
| h/35=3/15 | | 4(x+7)^2-49=-13 | | -10+m=1 | | –5f+1=–4f+10+2f | | -2(y-4)÷3y=13 | | 10m/11=20 | | 2x+5+2x+5=130 | | -(-5x+8)=1 | | 4(3x)=80 | | 5c/7=10 | | q2–5=–18 | | 76-n=82 | | 12*y=-9 | | –6q−3=–8q+9 | | 4b/6=8 | | 0.75x-6.75=54 | | 8(x-1)=9 | | t+16/9=4 | | 5/n=4/9 | | 4x-4+3x=128 | | 0.75(x−9)=54 | | n-13=56 | | 692y-9)=-42 | | 8v-5+1v=67 | | 13-v/4=1 | | u^2=7u-10 | | h/6-1=-3 | | -37+2j=3 | | 6.6=s/9 | | 3(k+9)=66 | | x-8-2x=-12 | | 6500+55x=4500+65x |